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Abstract

The aversive aspects of withdrawal from chronic nicotine exposure are thought to be an important motivational factor contributing to the

maintenance of the tobacco habit in human smokers. Much emphasis has been placed on delineating the underlying neurobiological

mechanisms mediating different components of the nicotine withdrawal syndrome. Recent studies have shown that both central and

peripheral populations of nicotinic acetylcholine receptors (nAChRs) are involved in mediating somatic signs of nicotine withdrawal as

measured by the rodent nicotine abstinence scale. However, only central populations of nAChRs are involved in mediating affective aspects

of nicotine withdrawal, as measured by elevations in brain-stimulation reward thresholds and conditioned place aversion. Nicotine interacts

with several neurotransmitter systems, including acetylcholine, dopamine, opioid peptides, serotonin, and glutamate systems. Evidence so far

suggests that these neurotransmitters play a role in nicotine dependence and withdrawal processes. The available evidence also suggests that

different underlying neurochemical deficits mediate somatic and affective components of nicotine withdrawal. The aim of the present review

is to discuss preclinical findings concerning the neuroanatomical and neurochemical substrates involved in these different aspects of nicotine

withdrawal. D 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The burden of disease and negative economic impact of

tobacco addiction on society is considerable. It has been

projected that by 2020 tobacco will become the largest

single health problem worldwide, causing approximately

8.4 million deaths annually (Murray and Lopez, 1997).

Furthermore, the World Bank estimates that in high-income

countries, smoking-related healthcare accounts for 6–15%

of all annual healthcare costs. In fact, approximately £1.5

billion was spent between 1996–1997 on the care and

treatment of patients suffering from tobacco-related diseases

in England alone (Parrott et al., 1998). Therefore, there is

much incentive to develop interventions designed to reduce

and prevent tobacco use. To achieve this goal, it is necessary

to understand the mechanisms by which tobacco addiction

occurs. Evidence suggests that nicotine, which acts at

neuronal nicotinic acetylcholine receptors (nAChRs), is

one of the active components in tobacco smoke responsible

for tobacco addiction (see Stolerman and Jarvis, 1995;

Crooks and Dwoskin, 1997). Thus, there is considerable

interest in elucidating the neurobiological mechanisms that

give rise to nicotine dependence and withdrawal symptoms,

processes thought to be crucial in the development and

maintenance of the tobacco habit (Watkins et al., 2000a).

The aim of the present review is to briefly describe the

aversive behavioral consequences associated with nicotine

withdrawal and discuss preclinical findings concerning the

underlying neurobiology of this phenomenon.

2. Neuronal nAChRs

Nicotinic receptors are expressed on mature skeletal

muscle, in autonomic ganglia and within the central nervous

system (CNS) (Holladay et al., 1997). Not surprisingly, most

interest in the behavioral actions of nicotine has focused on

the role of nAChRs located within the CNS. Neuronal

nAChRs are members of the superfamily of ligand-gated

ion channels that include g-aminobutyric acidA (GABAA),

GABAC, glycine, and serotonin3 (5-HT3) receptors that are
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derived from a number of closely related genes. nAChRs,

like other members of the superfamily of ligand-gated ion

channels, are composed of five membrane spanning sub-

units that combine to form a functional receptor (Albu-

querque et al., 1997; Dani, 2001; Lindstrom et al., 1996;

Lena and Changeux, 1998; Role and Berg, 1996). Indi-

vidual neuronal nAChR subunits arrange in different com-

binations to form individual nAChRs with distinct

pharmacological and kinetic properties. The neuronal a
subunit exists in nine isoforms (a2–a10) whereas the

neuronal b subunit exists in three isoforms (b2–b4) (Elgoy-
hen et al., 2001; Arneric et al., 1995; Wonnacott, 1997).

Oocyte expression systems injected with pairwise combi-

nations of different neuronal a and b subunits have

provided evidence that these subunits combine with a

stoichiometry of 2a:3b to produce a functional neuronal

nicotinic hetero-oligomeric receptor (Deneris et al., 1991;

Conroy and Berg, 1995; Colquhoun and Patrick, 1997). In

contrast, a7, a8, and a9 subunits form homo-oligomeric

complexes composed of five a subunits and lacking b
subunits (Chen et al., 1998), with only the a7 pentamer

being expressed in the CNS.

Based on radioligand binding studies, neuronal nAChRs

have been broadly divided into three classes within the

rat brain: those with a high affinity binding site for

[3H]-nicotine which correspond to a4-containing nAChRs,

the a4b2 combination being the most abundant (Flores

et al., 1992; Picciotto et al., 1995), those with high affinity

for [125I]-a-bungarotoxin which correspond to a7 nAChRs

(Clarke, 1992), and those with high affinity for neuronal

bungarotoxin which correspond to a3-containing nAChRs

(Schulz et al., 1991). It should be noted that the precise

combinations of nAChR subunits that constitute active

nAChRs within the CNS in vivo are unknown and have

so far only been inferred by their pharmacological profile

(Kaiser et al., 1998; Luo et al., 1998; Sershen et al., 1997;

Sharples et al., 2000). However, with the advent of more

sophisticated tools it is becoming possible to identify the

nAChR subunits expressed by individual neurons within

specific brain regions (Sheffield et al., 2000; Lena and

Changeux, 1999; Sudweeks and Yakel, 2000). For example,

one brain region that is of particular interest in relation to the

rewarding actions of acute nicotine and in mediating nic-

otine dependence and withdrawal is the ventral tegmental

area (VTA), a midbrain dopaminergic nucleus. A recent

study by Klink et al. (2001) attempted to characterize

nAChRs located within the VTA by means of single-cell

reverse transcription polymerase chain reaction (RT-PCR)

and patch-clamp recordings. Based on these findings, it was

proposed that most dopamine neurons in the VTA express

putative a4a6a5(b2)2 and a4a5(b2)2 nAChR subtypes,

whereas approximately 50% express the a7 homomeric

receptor (Klink et al., 2001). Furthermore, GABA neurons

in the VTA appear to express the (a4)2(b2)3 subtype (Klink
et al., 2001). Dopamine neurons in the VTA are hetero-

genous in terms of their projections to different terminal

fields and have fundamentally different physiological char-

acteristics (e.g., Takahata and Moghaddam, 2000). It is

possible that the complex expression patterns of nAChRs

within the VTA may represent differential expression of

nAChR subtypes on different populations of dopamine

neurons, which may contribute to the heterogeneity of these

neurons. Such investigations offer the intriguing possibility

that different nAChR subtypes involved in various aspects

of nicotine reward, dependence, and withdrawal processes

may eventually be identified and targeted.

The function of nAChRs within the brain also has been

investigated. Nicotinic receptors within the CNS are situated

mainly on presynaptic terminals (Wonnacott, 1997) but also

are found at somatodendritic, axonal, and postsynaptic loca-

tions (for review see Sargent, 1993). It has been proposed that

the exclusive or predominant role of nAChRs in the CNS is

the modulation of neurotransmitter release (Wonnacott,

1997). Accordingly, by an action at nAChRs, nicotine has

been shown to stimulate the release of most neurotransmitters

in regions throughout the brain (Araujo et al., 1988; Toide

and Arima, 1989; McGehee et al., 1995; McGehee and Role,

1995; Gray et al., 1996; Role and Berg, 1996; Wilkie et al.,

1996; Albuquerque et al., 1997; Alkondon et al., 1997;

Kenny et al., 2000a; Grady et al., 2001). Therefore, as

discussed in detail below, it is likely that various neuro-

transmitter systems are involved in the adaptations that occur

in response to chronic nicotine exposure that give rise to

dependence and withdrawal responses.

3. The nicotine withdrawal syndrome in humans

There are over 4000 chemicals in cigarette smoke, many

of which potentially contribute to the reinforcing properties

of tobacco. However, in light of the myriad preclinical studies

demonstrating nicotine’s reinforcing properties across many

species (Goldberg et al., 1981; Risner and Goldberg, 1983;

Henningfield and Goldberg, 1983; Fudala et al., 1985; Gold-

berg and Henningfield, 1988; Corrigall and Coen, 1991;

Huston-Lyons and Kornetsky, 1992; Donny et al., 1995,

1999, 2000; Corrigall, 1999; Watkins et al., 1999; Irvine

et al., 2001; Markou and Paterson, in press), it generally has

been accepted that nicotine is a major component in tobacco

smoke responsible for addiction (see Stolerman and Jarvis,

1995). Therefore, the present review will focus on the role of

nicotine in tobacco dependence processes. Nevertheless,

before proceeding with a discussion of nicotine dependence

and withdrawal, it is important to point out that obtaining

nicotine is probably not the exclusive reason for maintaining

the tobacco habit in smokers. For example, nicotine-

containing and denicotinized cigarettes had similar meas-

ures of reinforcing efficacy in smokers when presented

alone, although there was a preference for nicotine-contain-

ing cigarettes when smokers were offered a choice (Shahan

et al., 1999). This observation suggests that conditioned

stimuli associated with smoking may contribute to the
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reinforcing properties of tobacco (Paterson and Markou,

2001; Donny et al., 1999; Shahan et al., 1999). Furthermore,

it is possible that of the many constituents of cigarette

smoke, there are other chemicals with reinforcing prop-

erties. For example, nornicotine, which is present in cigar-

ette smoke (Crooks and Dwoskin, 1997; Jacob et al., 1999),

is self-administered by rats (Bardo et al., 1999). Taken

together, these observations suggest that in addition to

nicotine, sensory and conditioned reinforcing effects of

smoking and possibly other reinforcing ingredients also

play a role in maintenance of the tobacco habit in smokers.

Smoking cessation is known to produce an aversive

withdrawal syndrome in humans (Hughes et al., 1991;

Shiffman and Jarvik, 1976), components of which may be

manifest for between 1–10 weeks (Hughes, 1992). This

syndrome arises, at least in part, because of the reduction in

nicotine intake in nicotine-dependent individuals. Accord-

ingly, nicotine replacement therapy, of which sublingual

nicotine tablets (Molander et al., 2000), nicotine gum

(Schneider et al., 1984), and nicotine patch (Rose et al.,

2001; Fagerstrom et al., 1993) are three examples, has been

shown to reduce the occurrence of withdrawal symptoms in

abstinent smokers. Conversely, reduction of the nicotine

content in smoked tobacco induced a withdrawal syndrome

in smokers that was accompanied by a significant reduction

in plasma nicotine levels (West et al., 1984). The aversive

aspects of the nicotine withdrawal syndrome are thought to

be powerful motivational factors contributing to the main-

Fig. 1. During nicotine withdrawal rats exhibit increased number of somatic signs of withdrawal. (A) Somatic withdrawal signs in rats undergoing spontaneous

nicotine withdrawal after removal of osmotic minipump delivering nicotine (3.16 mg/kg/day free base, 7 days) and in vehicle-treated control rats. (B) Effect of

mecamylamine (sc) on somatic signs in nicotine- and vehicle-treated rats. (C) Effect of dihydro-b-erythroidine (DHbE, sc) on somatic signs in nicotine- and

vehicle-treated rats. (D) Effect of methyllycaconitine (MLA) (sc) on somatic signs in nicotine- and vehicle-treated rats. (E) Effect of chlorisondamine (sc) on

somatic signs in nicotine- and vehicle-treated rats. (F) Effect of chlorisondamine (icv) on somatic signs in nicotine- and vehicle-treated rats. Asterisks indicate

statistically significant differences between nicotine- and saline-treated rats ( *P< .05, **P < .01). Hash symbols indicate statistically significant difference in

overall somatic withdrawal signs compared to 0.0 mg/kg DHbE ( #P< .05). All data are expressed as mean ( ± S.E.M.) somatic signs of withdrawal at each time

point or antagonist dose. Reproduced with permission from Epping-Jordan et al. (1998) and Watkins et al. (2000b).
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tenance of the tobacco habit. Indeed, withdrawal duration

and severity have been shown to predict smoking relapse

(Piasecki et al., 1998, 2000). Further, the efficacy of nicotine

replacement therapy in smoking cessation trials, at least in

certain individuals (Fagerstrom, 1988; Fagerstrom et al.,

1992; Sachs and Leischow, 1991), is related to its ability to

prevent the onset and reduce the duration of nicotine

withdrawal. Ironically, it appears that tobacco companies

were amongst the first to recognize the importance of

withdrawal in maintaining smoking behavior: ‘‘Why do

people smoke. . .to relax; for the taste; to fill the time;

something to do with my hands. . . But, for the most part,

people continue to smoke because they find it too uncom-

fortable to quit’’ (Philip Morris, 1984).

This nicotine withdrawal syndrome is comprised of

‘physical’ or somatic, and affective components. The most

common somatic symptoms include bradycardia, gastro-

intestinal discomfort, and increased appetite. Affective

symptoms primarily include craving, depressed mood, dys-

phoria, anxiety, irritability, and difficulty concentrating

(American Psychiatric Association, 1994; Hughes et al.,

1991; West et al., 1991; Glassman et al., 1990; Parrott,

1993). Recently, attempts have been made to develop

animal models of the somatic and affective aspects of

nicotine withdrawal in order to investigate the underlying

neurobiological substrates involved in these processes.

4. Somatic symptoms of nicotine withdrawal in rats

A somatic nicotine withdrawal syndrome analogous to

that observed in humans also has been observed in rodents

(Fig. 1). Malin and colleagues first identified and charac-

terized this somatic nicotine withdrawal syndrome in rats

(described in detail by David Malin in this issue), an

observation that has since been replicated by other groups

(e.g., Hildebrand et al., 1997; Epping-Jordan et al., 1998;

Carboni et al., 2000). Most recently, a similar somatic

nicotine withdrawal syndrome has been observed also in

mice (Isola et al., 1999). The most prominent signs of this

rodent withdrawal syndrome include abdominal constric-

tions (writhes), facial fasciculation, eyeblinks, ptosis, and

gasps along with miscellaneous other signs including escape

attempts, foot licks, genital grooming, shakes, scratches, and

yawns (Watkins et al., 2000b; Malin et al., 1998; Hildebrand

et al., 1997).

Several lines of evidence support the notion that the

somatic signs observed in rats after cessation of a period of

chronic nicotine exposure constitutes a nicotine withdrawal

syndrome. First, rats chronically treated and then withdrawn

from nicotine administration display more somatic signs than

when these same subjects were nicotine naı̈ve, just prior to

the termination of nicotine administration, after the recovery

from withdrawal or compared to saline-treated control rats

(Malin et al., 1992). Second, the severity of the withdrawal

signs was proportional to the amount of prior nicotine

exposure, i.e., animals exposed to higher concentrations of

nicotine demonstrated more somatic signs when compared to

animals treated with lower nicotine concentrations (Malin

et al., 1992). Interestingly, the amount of nicotine consumed

in the form of tobacco does not appear to be an accurate

predictor of withdrawal severity in human smokers (Hughes

et al., 1990). Third, nicotine reverses withdrawal signs in rats

undergoing nicotine withdrawal, thereby demonstrating that

tonic activation of nAChRs is crucial in preventing the onset

of these somatic symptoms (Malin et al., 1992). This

conclusion is further supported by the fact that various

nAChR antagonists (see Fig. 1 and Table 1), such as

chlorisondamine (Watkins et al., 2000b; Hildebrand et al.,

1997), mecamylamine (Malin et al., 1994; Hildebrand et al.,

1997; Watkins et al., 2000b), and hexamethonium (Malin

et al., 1997) also precipitated withdrawal signs in nicotine-

dependent rats. It should be noted, however, that in the case

of human cigarette smokers administration of mecamyl-

amine did not precipitate a withdrawal syndrome (Eissen-

berg et al., 1996; Stolerman, 1986; Nemeth-Coslett et al.,

1986; Rose et al., 2001). Indeed, even a relatively high dose

of mecamylamine (10 mg) did not precipitate withdrawal

signs in smokers (Rose et al., 2001). It is likely that this dose

of mecamylamine is sufficient to block nAChRs because

similar doses (5–20 mg) were sufficient to block the sub-

jective effects of nicotine after intravenous administration in

cigarette smokers (Lundahl et al., 2000). One possible

explanation for this discrepancy is that withdrawal signs

were abated by the compensatory increase in tobacco con-

sumption in smokers that was observed after mecamylamine

administration (Eissenberg et al., 1996; Stolerman, 1986;

Nemeth-Coslett et al., 1986; Rose et al., 2001). However, it

Table 1

Minimal dose (mg/kg) of nicotinic and opioid receptor antagonists that precipitated statistically significant increases in somatic abstinence signs, elevated brain

reward thresholds or induced conditioned place aversions in nicotine-dependent rats compared to saline-treated controls

Somatic signs Reward thresholds Conditioned place aversion

Mecamylamine (0.29 mg/kg) Mecamylamine (0.57 mg/kg) Dihydro-b-erythroidine (10 mg/kg)

Chlorisondamine (0.2 mg/kg sc) Dihydro-b-erythroidine (2 mg/kg) Naloxone (0.12 mg/kg)

Chlorisondamine (2.5 mg icv) Chlorisondamine (5 mg icv) Mecamylaminea

Naloxonea Naloxonea

Dihydro-b-erythroidinea Chlorisondaminea (sc)

methyllycaconitinea methyllycaconitinea

a Indicates that these receptor antagonists either had no effect or did not induce differential effects on somatic signs of withdrawal, reward threshold

elevations, or conditioned place aversions at any dose tested (data taken from Epping-Jordan et al., 1998; Watkins et al., 2000b; Markou and Paterson, in press).
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is possible that administration of a higher dose of mecamyl-

amine which would block an even greater number of

nAChRs may precipitate withdrawal signs in nicotine-

dependent smokers.

5. Affective symptoms of nicotine withdrawal in rats

Although the somatic components of withdrawal from

drugs of abuse are certainly unpleasant, it has been

hypothesized that avoidance of the affective components

of withdrawal plays a more important role in the main-

tenance of dependence to drugs of abuse, including

nicotine, than the somatic aspects of withdrawal (Koob

et al., 1993; Markou et al., 1998; Watkins et al., 2000a).

This hypothesis has generated interest in identifying

behavioral procedures that can model affective aspects of

nicotine withdrawal. One of the main affective symptoms

associated with withdrawal from drugs of abuse is a

‘diminished interest or pleasure’ in rewarding stimuli

(American Psychiatric Association, 1994; Covey et al.,

1998). Interestingly, ‘diminished interest or pleasure’ in

rewarding stimuli (i.e., ‘anhedonia’) is also one of the core

symptoms of depression (American Psychiatric Asso-

ciation, 1994; Markou et al., 1998). Brain-stimulation

reward threshold elevations in rats have been proposed

as an operational measure of this core symptom of

depression and drug withdrawal. Indeed, withdrawal from

drugs of abuse such as cocaine, amphetamine, opiates, and

alcohol (Markou and Koob, 1991; Baldo et al., 1999;

Paterson et al., 2000; Wise and Munn, 1995; Kokkinidis et

al., 1986; Schulteis et al., 1994, 1995; Lin et al., 1999) all

have been shown to significantly elevate brain-stimulation

reward thresholds, reflecting diminished interest in the

rewarding electrical stimuli. In light of the numerous

observations that smoking cessation precipitates depressive

symptoms, even in individuals without a prior history of

depression (Bock et al., 1996; Stage et al., 1996; Borrelli

et al., 1996; Covey et al., 1997; Covey et al., 1998), the

effect of nicotine withdrawal on brain-stimulation reward

thresholds in rats was investigated. It was found that

spontaneous withdrawal (Epping-Jordan et al., 1998; Har-

rison et al., 2001) or systemic administration of nAChR

antagonists such as DHbE (Epping-Jordan et al., 1998)

and mecamylamine (Watkins et al., 2000b) precipitated

robust elevations in brain reward thresholds in rats chron-

ically treated with nicotine (Fig. 2 and Table 1). Similarly,

direct intracerebroventricular (icv), but not systemic, ad-

ministration (Fig. 2) of the nAChR antagonist chlorisond-

amine at doses that do not cross the blood–brain barrier

(Gosling and Lu, 1969) also elevated brain reward thresh-

olds (Watkins et al., 2000b). Therefore, elevations in brain

reward thresholds provide a useful tool to investigate the

affective aspects of nicotine withdrawal.

A second procedure that can be used to investigate the

affective aspects of nicotine withdrawal is the conditioned

place aversion paradigm. Clinical and preclinical observa-

tions have demonstrated that negative affective states

experienced during drug withdrawal can become associated

with previously neutral stimuli and that these conditioned

stimuli gain motivational significance. That is, drug-

dependent rats are treated with an antagonist to precipitate

withdrawal and are confined to one compartment of the

conditioned place aversion apparatus. On a different day,

the same subjects are confined in a different compartment

following a saline injection. This procedure leads to an

association of the withdrawal-paired compartment with a

negative affective state. Thus, during subsequent exposures

to the apparatus, subjects tend to avoid the compartment

associated with the withdrawal effects. For example, pre-

cipitated opiate withdrawal in rats has been shown to

produce an aversive motivational state that becomes asso-

ciated with environmental cues and leads to a conditioned

place aversion (Hand et al., 1988; Stinus et al., 1990;

Schulteis et al., 1994, 1998; Spanagel et al., 1994). These

conditioned effects appear to play a significant role in

nicotine dependence (Butschky et al., 1995; Baldinger

et al., 1995). The effect of antagonist-precipitated nicotine

withdrawal on conditioned place aversion also has been

recently investigated (Table 1). DHbE produced a condi-

tioned place aversion after systemic administration in rats

chronically treated with nicotine (Ise et al., 2000; Watkins et

al., 2000b; Suzuki et al., 1996, 1997, 1999) (Fig. 3). This

conditioned place aversion was demonstrated by a signifi-

cant reduction in the time spent in the compartment paired

with DHbE administration in nicotine-dependent but not

control rats (Watkins et al., 2000b). However, a relatively

high dose of DHbE (10 mg/kg) (Watkins et al., 2000b) was

required to produce this conditioned place aversion com-

pared to the low dose (2–4 mg/kg) (Epping-Jordan et al.,

1998; Watkins et al., 2000a) required to precipitate eleva-

tions in brain reward thresholds (see Table 1). Watkins et al.

(2000b) reported that mecamylamine (0.5–6 mg/kg) did not

produce a conditioned place aversion (Fig. 3) but did

precipitate elevations in brain reward function (Fig. 2) in

nicotine-dependent compared to control rats. These obser-

vations taken together suggest that a dissociation may exist

in the underlying mechanisms mediating conditioned place

aversions compared to those mediating elevations in brain

reward thresholds observed during nicotine withdrawal.

More specifically, the fact that relatively low does of

mecamylamine (0.57 mg/kg) or DHbE (2 mg/kg) (see

Table 1) induced statistically significant threshold eleva-

tions in nicotine-dependent rats, whereas a much higher

dose of DHbE (10 mg/kg) was required to produce a

conditioned place aversion, with no differential effects of

even high mecamylamine doses (4–6 mg/kg) in nicotine-

versus saline-treated rats, indicates possible differences in

the neurobiological substrates mediating various aspects of

nicotine withdrawal. Interestingly, Suzuki et al. (1997)

found that mecamylamine (1 mg/kg) did produce a condi-

tioned place aversion in nicotine-dependent rats (Suzuki
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et al., 1997) contrary to the findings of Watkins et al.

(2000b). However, Watkins et al. (2000b) used Wistar rats

in their study whereas Suzuki et al. used Sprague–Dawley

rats. These findings suggest that strain differences may play

an important role in the expression of conditioned motiva-

tional states precipitated by mecamylamine in nicotine-

dependent rats. This conclusion is supported by the recent

observation that within the same study mecamylamine

(1 mg/kg) produced a significant place aversion in Lewis,

but not in Fischer 344 rats (Suzuki et al., 1999). Finally,

naloxone also has been shown to produce a conditioned place

aversion in nicotine-dependent rats (Fig. 3 and Table 1),

suggesting that opioid systems may be particularly important

in conditioned motivational states associated with nicotine

withdrawal (see below for more detailed discussion).

6. Central versus peripheral location of nicotinic

receptors involved in nicotine dependence

The precise location of the nAChRs involved in medi-

ating the various aspects of nicotine withdrawal is unclear,

although it is likely that both centrally and peripherally

located nAChRs are involved. Systemic administration of

the nAChR antagonist hexamethonium (0.5–10 mg/kg),

which poorly penetrates the blood–brain barrier (Gosling

Fig. 2. Nicotine withdrawal in rats is associated with elevations in brain reward thresholds. (A) Percentage of baseline reward thresholds in rats tested 2–152 h

after removal of osmotic minipump delivering nicotine (3.16 mg/kg/day free base, 7 days). (B) Percentage of baseline reward thresholds in nicotine- and

vehicle-treated rats after mecamylamine (sc) administration. (C) Percentage of baseline reward thresholds in nicotine- and vehicle-treated rats after dihydro-

b-erythroidine (DHbE, sc) administration. (D) Percentage of baseline reward thresholds in nicotine- and vehicle-treated rats after administration of

methyllycaconitine (MLA) (sc). (E) Percentage of baseline reward thresholds in nicotine- and vehicle-treated rats after administration of chlorisondamine (sc).

(F) Percentage of baseline reward thresholds in nicotine- and vehicle-treated rats after administration of chlorisondamine (icv). Asterisks indicate statistically

significant differences between nicotine- and saline-treated rats ( *P < .05, **P < .01). Hash symbols indicate statistically significant difference in overall

somatic withdrawal signs compared to 0.0 mg/kg chlorisondamine ( #P < .05). All data are expressed as mean ( ± S.E.M.) overall somatic withdrawal signs at

each time point or antagonist dose. Reproduced with permission from Epping-Jordan et al. (1998) and Watkins et al. (2000b).
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and Lu, 1969), precipitated few withdrawal signs in nic-

otine-dependent rats (Malin et al., 1997). Conversely, direct

intracerebral hexamethonium injection precipitated somatic

signs of withdrawal in nicotine-dependent rats (Malin et al.,

1997). It was therefore concluded that somatic withdrawal

signs are directly mediated by central but not peripheral

populations of nAChRs (Malin et al., 1997). More recently,

Watkins et al. (2000b) demonstrated that chlorisondamine at

doses (0.1–1 mg/kg) that do not readily cross the blood–

brain barrier (Gosling and Lu, 1969) precipitated signifi-

cantly more somatic signs of withdrawal in nicotine-treated

rats compared to saline-treated rats (Table 1). Similarly,

Hildebrand et al. (1997) also showed that systemic admin-

istration of chlorisondamine (1 mg/kg) precipitated somatic

withdrawal signs in nicotine-treated rats. Moreover, admin-

istration of either nicotine or the peripherally active nAChR

agonist tetramethylammonium reversed somatic withdrawal

signs (Hildebrand et al., 1997). Therefore, in contrast with

the findings of Malin et al. (1997), these observations

suggest that nAChRs located peripherally contribute to the

expression of somatic signs in rats undergoing nicotine

withdrawal. This discrepancy may be explained in part

by the fact that hexamethonium is not very effective at

blocking nAChRs compared to other nAChR antagonists

(Marks et al., 1993) such as chlorisondamine, particularly

at peripheral ganglia (Abdel-Rahman, 1989; Santajuliana

et al., 1996). nAChRs located within the brain also likely

play a role in mediating somatic withdrawal signs. For

example, direct intraventral tegmental area injection of

mecamylamine (Hildebrand et al., 1999) or icv adminis-

tration of chlorisondamine (Watkins et al., 2000b; Fig. 1)

both precipitated somatic withdrawal signs. Overall, it

appears that centrally and peripherally located populations

of nAChRs are involved in mediating somatic signs of

nicotine withdrawal.

It is likely that centrally located populations of nAChRs

are exclusively involved in mediating affective aspects of

nicotine withdrawal. Systemic administration of the neur-

onal nAChR antagonist, DHbE, which selectively blocks

centrally located high affinity neuronal nAChRs (Harvey

et al., 1996), precipitated elevations in brain reward thresh-

olds (Epping-Jordan et al., 1998; Fig. 2) and produced a

conditioned place aversion (Watkins et al., 2000b; Fig. 3) in

nicotine-treated rats (Table 1). However, DHbE produced

only modest increases, and only at a high dose (4 mg/kg), in

the number of somatic signs with no differences between

nicotine-dependent and control rats (Epping-Jordan et al.,

1998; Fig. 1), suggesting that nicotine-dependent animals

are not more sensitive than saline-treated controls to the

increases in somatic signs of withdrawal induced by DHbE
(Table 1). Further, systemic administration of doses of

chlorisondamine (0.1–1 mg/kg) that do not penetrate the

blood–brain barrier had no effect on brain reward thresh-

olds (Epping-Jordan et al., 1998; Watkins et al., 2000b)

whereas direct icv administration of chlorisondamine pre-

cipitated elevations in reward thresholds (Fig. 2). Finally,

systemic administration of hexamethonium (1–3 mg/kg) at

doses that do not penetrate the blood–brain barrier had no

effect on conditioned place aversion in rats chronically

treated with nicotine (Ise et al., 2000). Overall, this pattern

of results suggests that unlike somatic withdrawal signs that

are peripherally and centrally mediated, affective aspects of

nicotine withdrawal (conditioned place aversion and eleva-

tions in brain reward thresholds) are mediated exclusively by

central populations of nAChRs. Furthermore, observations

Fig. 3. Conditioned place aversion induced by sc administration of dihydro-

b-erythroidine, mecamylamine, or naloxone in nicotine- (3.16 mg/kg/day

free base) and vehicle-treated rats. All data are presented as mean

( ± S.E.M.) difference in time spent in the antagonist-paired compartment

before conditioning versus after conditioning. Asterisks indicate statistically

significant differences between the time spent in the antagonist-paired

compartment compared before conditioning compared with after condition-

ing ( *P< .05, **P< .01). Reproduced with permission from Watkins

et al. (2000b).
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demonstrating that somatic withdrawal signs can be precipi-

tated in the absence of affective signs and vice versa supports

the notion that a dissociation exists in the underlying

mechanisms mediating somatic and affective aspects of

nicotine withdrawal.

7. Subtypes of neuronal nAChRs involved in mediating

nicotine withdrawal

At present it is unclear which class of neuronal nAChR

subtypes are involved in mediating the symptoms of nicotine

withdrawal and only recently have studies addressed this

question. Mecamylamine, which precipitated both somatic

and affective symptoms of nicotine withdrawal (Table 1), is a

relatively nonspecific noncompetitive nAChR antagonist

(Lindstrom et al., 1996; Varanda et al., 1985), but has

nevertheless been shown to be slightly more selective for

the a3-containing nAChRs compared to those containing

a4 subunits, with the least activity at the a7 nAChRs (Gotti

et al., 1997). Affective, but not somatic, signs of nicotine

withdrawal also were precipitated with the competitive

nAChR antagonist DHbE (Epping-Jordan et al., 1998). This

nAChR antagonist is relatively selective for the a4- and

b2-containing high-affinity nAChRs compared to other

classes of nAChRs, although at higher concentrations DHbE
E also will antagonize other classes of nAChRs (Harvey and

Luetje, 1996; Harvey et al., 1996; Damaj et al., 1995;

Wonnacott, 1997). Therefore, it is likely that a4-containing
nAChRs are involved in mediating nicotine dependence, as

measured by the ability of antagonists of this receptor to

precipitate signs of withdrawal in rats chronically treated

with nicotine. It should be recognized that firm conclusions

concerning subtypes of nAChRs mediating nicotine depend-

ence cannot be made based on the effects of DHbE because

of its ability to block many different classes of nAChRs.

Nevertheless, the observation that chronic nicotine exposure

selectively up-regulates the expression (Flores et al., 1997;

Fenster et al., 1999; Sparks and Pauly, 1999; Buisson and

Bertrand, 2001) and possibly the function (Buisson and

Bertrand, 2001) of a4-containing nicotinic receptors com-

pared to other non-a4-containing nAChRs subtypes supports
a role for a4-containing nAChRs in nicotine dependence.

The role of the a7 nAChR in nicotine dependence also

has been investigated. This class of nAChR appears to play

some role in mediating the reinforcing actions of acute

nicotine. For example, direct administration of the

a7-selective nAChR antagonist, methyllycaconitine (MLA)

into the VTA reversed the potentiation in brain stimulation

reward observed after acute systemic nicotine admin-

istration (Nomikos et al., 1999). Furthermore, MLA (3.9

and 7.8 mg/kg free base) significantly reduced nicotine

self-administration in rats (Markou and Paterson, in press;

however, see Grottick et al., 2000). Nevertheless, in nicotine-

treated rats systemic administration of MLA (7.8 mg/kg) did

not precipitate nicotine withdrawal as reflected by the

absence of elevations in brain reward thresholds or somatic

signs of withdrawal (Markou and Paterson, in press).

Previously, it was shown that MLA primarily antagonized

a7 nAChRs and does not act at other nAChRs until

concentration levels are 10–30-fold higher than those

obtained with 5 mg/kg MLA (dose expressed as salt)

(Wonnacott et al., 1993). Further, nAChR antagonists such

as mecamylamine and DHbE that act selectively at nAChRs

other than the a7 nAChR precipitate nicotine withdrawal. If

MLA were acting at nAChRs other than the a7 nAChR, it

too would have been expected to precipitate nicotine with-

drawal. Taken together, these observations suggest that

MLA at the doses used (7.8 mg/kg) antagonized primarily

a7 and not other subtypes of nAChRs. Therefore, even

though a7 nAChRs appear to be involved in the rewarding

actions of acute nicotine, these receptors do not appear to

play a significant role in nicotine dependence as reflected by

the lack of precipitation of the nicotine withdrawal syn-

drome in nicotine-dependent animals. One possible explana-

tion for these data is that in drug naı̈ve animals, nicotine

activates a7 nAChRs that contribute to the rewarding

effects of nicotine. However, in nicotine-dependent rats,

a7 nAChRs are already in a desensitized state. Thus,

antagonism of these receptors would have no effect on

neuronal activity. Indeed, a7 nAChRs in different brain

sites are known to undergo rapid desensitization in the

presence of concentrations of nicotine achieved in the brains

of smokers (Alkondon et al., 2000; Pidoplichko et al., 1997;

Mansvelder and McGehee, 2000). Thus, inactivation of a7
nAChRs may occur in nicotine-dependent rats in response

to chronic nicotine exposure. Interestingly, it has been

hypothesized that smokers regulate their pattern of nicotine

intake in order to either activate or desensitize populations

of nAChRs, and thereby control the activity of these

different populations of receptors (Dani and Heinemann,

1996). Thus, the a7 subtype may be a class of nAChR

whose activity is regulated in rats and humans by careful

titration of the level of nicotine intake. Similarly, nAChRs

other than the a7 receptor subtype also undergo rapid

nicotine-induced desensitization (Dani et al., 2000; Pido-

plichko et al., 1997; Lena and Changeux, 1998; Fenster

et al., 1997). Therefore, it is possible that by careful titration

of nicotine intake, smokers modulate the activity of many

classes of nAChRs in order to regulate the activity of

nicotine in the brain.

8. Neurotransmitter systems involved in

nicotine withdrawal

8.1. The role of acetylcholine in nicotine withdrawal

The cholinergic system arises within basal forebrain

(medial septum, diagonal band nucleus, and substantia

innominata) and pontine (pedunculopontine and laterodor-

sal tegmental nuclei) sites and projects throughout the

P.J. Kenny, A. Markou / Pharmacology, Biochemistry and Behavior 70 (2001) 531–549538



brain. The cholinergic system appears to play a significant

role in mediating the rewarding actions of acute nicotine.

For example, lesioning of the pedunculopontine tegmental

nucleus reduced the rewarding effects of self-administered

nicotine (Lanca et al., 2000). The cholinergic system

probably also plays a role in mediating nicotine with-

drawal. Blockade of nAChRs increased the occurrence of

withdrawal-related behaviors in rats chronically treated

with nicotine (see above; Epping-Jordan et al., 1998;

Hildebrand et al., 1997; Watkins et al., 2000b; Malin et

al., 1993). Moreover, administration of nicotinic receptor

antagonists precipitated withdrawal-like responses in nic-

otine naı̈ve animals (Epping-Jordan et al., 1998; Watkins et

al., 2000b; see Table 1). This observation suggests that

endogenous cholinergic tone, by an action at nAChRs,

prevents the expression of somatic and affective signs

usually associated with nicotine withdrawal, and that these

withdrawal responses arise because of deficits in choliner-

gic transmission. Interestingly, direct infusion of nicotinic

receptor antagonists into the VTA elevated brain-simulation

reward thresholds (Yeomans and Baptista, 1997) by a

similar magnitude to that observed in rats undergoing

nicotine withdrawal (Epping-Jordan et al., 1998; Watkins

et al., 2000b). Therefore, a reduction in endogenous

cholinergic tone may be one neurochemical adaptation

involved in mediating elevations in brain-stimulation

reward thresholds observed in rats during withdrawal from

chronic nicotine exposure.

8.2. The role of dopamine in nicotine withdrawal

There is now considerable evidence suggesting that the

dopamine fibers that arise within the VTA and project to the

nucleus accumbens (NAcc), known as the mesolimbic

dopamine system, play a major role in mediating the

reinforcing properties of acute nicotine. For example, acute

nicotine increased the firing rate of VTA dopamine neurons

(Grenhoff et al., 1986; Pidoplichko et al., 1997) and

elevated dialysate dopamine levels in the NAcc (Imperato

et al., 1986; Benwell and Balfour, 1992; Nisell et al., 1997).

Furthermore, direct injection of DHbE into the VTA (Corri-

gall et al., 1994), 6-hydroxydopamine lesions of the NAcc

(Corrigall et al., 1994), or systemic administration of a

selective D1 or D2 dopamine receptor antagonist (Corrigall

and Coen, 1991; Corrigall et al., 1992) all attenuated

nicotine self-administration in rats.

Spontaneous and antagonist-precipitated withdrawal

from various drugs of abuse such as amphetamine,

cocaine, morphine, and ethanol (see Rossetti et al.,

1992; Weiss et al., 1992, 1996) has been shown to

produce marked deficits in accumbal dopamine release.

These observations are consistent with the notion that, in

addition to mediating the rewarding properties of drugs of

abuse like nicotine, the mesolimbic system also is

involved in mediating aversive behavioral states associ-

ated with drug withdrawal (Stinus et al., 1990). Recently,

Hildebrand et al. have shown that besides an increase in

somatic withdrawal signs, mecamylamine also signifi-

cantly decreased accumbal dopamine release in rats chron-

ically exposed to nicotine compared with control

rats (Hildebrand et al., 1999). Therefore, it is likely that

deficits in dopamine transmission in the NAcc play a role

in mediating nicotine withdrawal. However, somatic with-

drawal signs in this study were measured for 30 min

immediately after mecamylamine challenge, whereas the

decreases in dopamine output first were observed approx-

imately 45 min after injection. This temporal dissociation

in the onset of somatic withdrawal signs and decreased

dopamine output suggests that accumbal dopamine may

not necessarily be involved in mediating the somatic

aspects of nicotine withdrawal. Accordingly, Carboni

et al. (2000) have recently shown that the opioid receptor

antagonist naloxone (see below) increased somatic with-

drawal signs in nicotine-dependent rats without affecting

accumbal dopamine release. However, it should be noted

that mecamylamine administered directly into the VTA

precipitated somatic withdrawal signs (Hildebrand et al.,

1999). Therefore, at present the precise role of the

mesolimbic dopamine system in the mediation of somatic

nicotine withdrawal signs is unclear. Interestingly, a dis-

sociation in the role of accumbal dopamine levels and

somatic withdrawal signs has been proposed to occur in

the case of opiate withdrawal. For example, Diana et al.

demonstrated that decreases in accumbal dopamine release

during morphine withdrawal were not correlated with the

onset or duration of somatic withdrawal signs (Diana et al.,

1999). It has therefore been proposed that decreases in

accumbal dopamine output observed during drug with-

drawal are specifically related to reward and motivational

deficits, such as elevations in brain-stimulation reward

thresholds, but not somatic signs of withdrawal (Stinus

et al., 1990; however, see Harris and Aston-Jones, 1994).

Based on this hypothesis, it may be predicted that

dopamine receptor agonists would reverse the affective,

but not somatic, withdrawal signs in rats undergoing

nicotine withdrawal.

In addition to the NAcc, dopamine fibers that arise within

the VTA also terminate in the prefrontal cortex (PFC), a

projection known as the mesocortical dopamine pathway.

Enhanced dopamine transmission in the PFC has been

observed during exposure to stressful (Thierry et al., 1976;

Deutch and Roth, 1990; Inglis and Moghaddam, 1999) and

aversive stimuli (Kawasaki et al., 2001) and has been

implicated in mediating anxiety-related behaviors (Bradberry

et al., 1991; Broersen et al., 2000). In contrast to the deficits

in dopamine transmission observed in the NAcc, withdrawal

from drugs of abuse typically increases dopamine release in

the PFC in rats (Acquas and Di Chiara., 1992; Bassareo et al.,

1995). Carboni et al. (2000) have shown that mecamylamine

increased dopamine output in the PFC in rats chronically

exposed to nicotine and have suggested that these increases

in PFC dopamine release may be important in mediating
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aversive aspects of nicotine withdrawal. It should be noted

that Hildebrand et al. (1998) did not observe any difference

in PFC dopamine output in rats undergoing mecamylamine-

precipitated nicotine withdrawal. However, there were a

number of methodological differences between these two

studies that may account for this discrepancy. First, Carboni

et al. used male Sprague–Dawley rats, whereas Hildebrand

et al. used Wistar rats. Second, the same stereotaxic coor-

dinates were not used in each case, giving rise to the

possibility that subregions within the PFC respond differ-

ently during nicotine withdrawal. Third, slightly different

amounts of nicotine were administered to rats in each study

(Hildebrand: 3.61 mg/kg/day, Carboni: 3.16 mg/kg/day free

base). Finally, there was a dramatic increase in PFC dop-

amine release in response to even a saline injection in the

study by Hildebrand et al., possibly reflecting a mild stress

response. This effect on PFC dopamine levels may have

masked potential increases in dopamine levels that may have

been associated with nicotine withdrawal. Consistent with

this explanation is the observation that injection of vehicle

had no effect on PFC dopamine release in the study by

Carboni et al. in which an effect of nicotine withdrawal on

PFC dopamine levels was observed.

The effect of nicotine withdrawal on dopamine trans-

mission has also been examined in the central nucleus of

the amygdala (CNA). Panagis et al. (2000) reported that

mecamylamine-precipitated nicotine withdrawal signifi-

cantly reduced dopamine overflow and increased c-fos

expression in the CNA. There is tentative evidence suggest-

ing that dopamine possibly may mediate an anxiolytic

effect in this brain structure (Beaulieu et al., 1987; Coco

et al., 1992; Ray et al., 1988; Glavin, 1992). Therefore, the

reduction in dopamine output observed during nicotine

withdrawal in the CNA may be involved in mediating the

increase in anxiety associated with nicotine withdrawal.

However, at present the precise role of CNA dopamine

neurotransmission in mediating anxiety states is unclear and

further studies are required before any firm conclusions can

be drawn regarding the significance of this observation.

In conclusion, there appears to be some evidence sug-

gesting that dopamine may play a role in mediating nicotine

withdrawal, particularly in deficits in reward and motiva-

tional processes. It is noteworthy that the recently licensed

smoking cessation aid, bupropion (Zyban2) acts, at least in

part, by inhibiting neuronal uptake of dopamine and thereby

enhancing dopamine transmission (Terry and Katz, 1997;

Nomikos et al., 1992).

8.3. The role of opioid peptides in nicotine withdrawal

Opioid receptor antagonists such as naloxone and nal-

trexone have been reported to modulate cigarette consump-

tion and have been used as smoking cessation aids (Karras

and Kane, 1980; Wewers et al., 1998; Covey et al., 1999;

but see Nemeth-Coslett and Griffith, 1986; Sutherland et al.,

1995). Further, smoking status (nonsmoker, nondependent

smoker, or dependent smoker) has been shown to provide a

powerful predictor of opiate use among methadone-main-

tained opiate-dependent individuals (Frosch et al., 2000).

Therefore, there may be an interaction between cholinergic

and opioid receptor systems, with opioid receptors playing a

role in mediating smoking behavior.

The opioid receptor agonist morphine reversedwithdrawal

signs in rats undergoing spontaneous nicotine withdrawal

(Malin et al., 1993). Interestingly, nicotine significantly

reduced naloxone-precipitated opiate withdrawal in rats

(Zarrindast and Farzin, 1996), suggesting that common

neurobiological substrates may mediate nicotine and opiate

withdrawal. Accordingly, naloxone and an analog of the

endogenous antiopiate, neuropeptide FF, have been shown to

precipitate somatic withdrawal signs after chronic nicotine

treatment (Malin et al., 1993, 1996; Carboni et al., 2000).

However, it should be noted that the doses of naloxone

(2–4.5 mg/kg) (Carboni et al., 2000; Malin et al., 1993)

required to precipitate somatic withdrawal signs in nic-

otine-dependent rats were extremely high compared with

those required to precipitate somatic signs in opiate-treated

rats ( > 0.006 mg/kg) (Gellert and Sparber, 1977; Brady

and Holtzman, 1981; Koob et al., 1989; Higgins and

Sellers, 1994; Schulteis et al., 1994). Moreover, Watkins

et al. (2000b) showed that a high dose of naloxone

(8 mg/kg) increased somatic withdrawal signs by a similar

magnitude in nicotine- and vehicle-treated rats, whereas

lower doses (0.03–4 mg/kg) had no effect, suggesting no

specific role of opioid receptors in mediating somatic

nicotine withdrawal signs (Table 1). However, this discrep-

ancy may be explained by the fact that Watkins et al. used

Wistar rats whereas Sprague–Dawley rats were used in the

other studies (Carboni et al., 2000; Malin et al., 1993).

High naloxone doses (2–4 mg/kg) also have been shown

to precipitate elevations in brain reward thresholds in

nicotine-dependent rats (Watkins et al., 2000b). However,

once again naloxone elevated thresholds by a similar

magnitude in nicotine- and vehicle-treated rats, with lower

doses (0.03–1 mg/kg) having no effect (Watkins et al.,

2000b), although the effect of naloxone on reward thresh-

olds in strains of rat other than Wistar has not so far been

investigated. Overall, this pattern of results suggests that

somatic withdrawal signs and brain reward thresholds are

not particularly sensitive to alterations in opioid transmis-

sion. These observations also further support the hypo-

thesis that differential substrates mediate various aspects of

nicotine withdrawal. Interestingly, both naloxone (Tome

et al., 2001) and naltrexone (Almeida et al., 2000) have

been shown recently to antagonize nAChRs, suggesting

that opioid receptor antagonists may precipitate nicotine

withdrawal, at least in part, by directly blocking nAChRs.

In addition to its effects on somatic withdrawal signs

and brain reward thresholds, naloxone administration

appears to induce an aversive state in nicotine-dependent

rats that can be associated with environmental stimuli and

expressed as a conditioned place aversion (Ise et al., 2000;
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Watkins et al., 2000b; see Fig. 3). Interestingly, the dose of

naloxone (0.12 mg/kg) that induces a conditioned place

aversion in nicotine-treated rats is relatively low when

compared to doses required to precipitate somatic signs

of nicotine withdrawal (Table 1). Indeed, nicotine-depend-

ent rats appear more sensitive to opioid receptor antago-

nists than nicotinic receptor antagonists in the conditioned

place aversion paradigm (Watkins et al., 2000b; Malin

et al., 1993; Ise et al., 2000). Overall, these observations

suggest that opioid receptors may play a role in nicotine

dependence, particularly in relation to conditioned motiva-

tional states.

8.4. The role of serotonin in nicotine withdrawal

Evidence is accumulating that serotonin (5-HT), and the

5-HT1A receptor in particular, plays a role in nicotine

withdrawal (Benwell et al., 1990; Kenny et al., 2001).

Clinically, the 5-HT1A receptor partial agonist buspirone

shows efficacy in smoking cessation trials and may reduce

withdrawal severity in abstinent smokers (Hilleman et al.,

1992, 1994; West et al., 1991; but see Schneider et al.,

1996). Preclinical studies also have investigated the role of

5-HT and the 5-HT1A receptor in nicotine withdrawal.

Helton et al. (1993) have reported that nicotine withdrawal

significantly increased the acoustic startle response in rats

for approximately 4–5 days. It has been suggested that this

increased startle reactivity perhaps most closely resembles

the increased irritability observed in smokers undergoing

nicotine withdrawal (Hughes and Hatsukami, 1992).

Systemic administration of 5-HT1A receptor agonists

such as 8-OH-DPAT exacerbates this response, whereas

5-HT1A receptor antagonists, such as WAY-100635, alle-

viate this enhanced response (Rasmussen et al., 1997, 2000;

see Fig. 4). Further, electrophysiological investigations have

demonstrated that the responsiveness to 8-OH-DPAT of

neurons in the dorsal raphe nucleus (DRN) was signifi-

cantly increased during nicotine withdrawal (Rasmussen

and Czachura, 1997). Therefore, one possibility is that

nicotine withdrawal increases the inhibitory influence of

somatodendritic 5-HT1A autoreceptors located within the

raphe nuclei and thereby decreases 5-HT release into fore-

brain and limbic brain sites (e.g., Benwell and Balfour, 1979,

1982; Ridley and Balfour, 1997) which contributes to

nicotine withdrawal signs. This conclusion is supported by

the observation that a serotonergic antidepressant treatment

that combines the serotonin-selective re-uptake inhibitor

fluoxetine and the 5-HT1A receptor antagonist p-MPPI

[4-(20-methoxy-phenyl)-1-[20-(n-200pyridinyl)-p-iodobenza-

midol]-ethyl-piperazine] rapidly reverses the elevation in

brain-stimulation reward thresholds observed in rats under-

going nicotine withdrawal (Harrison et al., 2001; see Fig. 5).

Interestingly, this same treatment did not block the increased

expression of somatic signs in rats undergoing nicotine

withdrawal (Harrison et al., 2001), providing further evid-

ence for a dissociation of the mechanisms mediating affect-

ive and somatic aspects of nicotine withdrawal.

Contrary to the view propounded above that reduced

serotonergic transmission contributes to nicotine with-

drawal, Cheeta et al. (2001) have shown that administration

of nicotine directly into the DRN, at a concentration that

activates somatodendritic 5-HT1A receptors, reversed the

increase in anxiety observed in rats undergoing nicotine

withdrawal as measured in the social interaction test. This

observation suggests that there is enhanced serotonergic

transmission during nicotine withdrawal that mediates the

observed increases in anxiety. Taken together, these data

suggest that serotonin and 5-HT1A receptors are involved in

Fig. 4. Pretreatment with WAY-100635 reversed the enhanced startle

response of nicotine withdrawing rats. Startle responses were measured

daily for 3 days beginning 24 h after removal of nicotine- or vehicle-

containing minipumps. Rats received either chronic vehicle in pumps and

acute daily pretreatment during withdrawal with vehicle (Sal/Sal), or

chronic nicotine in pumps and acute daily pretreatment during withdrawal

with vehicle (Nic/Sal), chronic nicotine in pumps, and acute daily

pretreatment during withdrawal with three doses of WAY-100635

(0.001–1 mg/kg). Asterisks indicate statistically significant differences

between nicotine- and saline-treated rats ( *P < .05). Reproduced with

permission from Rasmussen et al. (1997).

Fig. 5. Serotonergic treatment reversed the elevations in brain reward

thresholds observed during nicotine withdrawal. Fluoxetine combined with

p-MPPI lowered the threshold elevations of nicotine withdrawing rats.

Arrow indicates the time-point at which fluoxetine and p-MPPI treatment

was administered. All data are expressed as percent mean ( ± S.E.M.)

baseline reward thresholds at each time point. Asterisks indicate statistically

significant differences between nicotine- and saline-treated rats ( *P < .05).

Reproduced with permission from Harrison et al. (2001).
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nicotine withdrawal, although at present it is unclear exactly

what role they play.

8.5. The role of glutamate in nicotine withdrawal

Acute nicotine is thought to act at several loci within the

mesolimbic system in order to increase dopamine release

within the NAcc and thereby produce its rewarding effects

(Corrigall and Coen, 1989; Corrigall et al., 1992). First,

nicotine acts at nAChRs located on dopamine neurons in the

VTA, and increases their firing rates (Pidoplichko et al.,

1997). Nicotine also acts at presynaptic a7 nAChRs located

upon glutamate efferents (Mansvelder and McGehee, 2000)

that arise within the PFC (Kalivas et al., 1989; Suaud-

Chagny et al., 1992; Taber and Fibiger, 1995) to increase

glutamate release in the VTA. This enhanced glutamate

release then acts at N-methyl-D-aspartate (NMDA) and non-

NMDA receptor sites on postsynaptic dopamine neurons

and increases their firing rate. Finally, nicotine also acts at

a7 nAChRs located on dopamine cell bodies in the VTA

(Pidoplichko et al., 1997) and on presynaptic terminals in

the NAcc (Fu et al., 2000b) to increase dopamine release. In

addition to its role in mediating the rewarding effects of

drugs like nicotine, there is also evidence for a role of

glutamate in drug dependence and withdrawal states (David-

son et al., 1995; Manzoni and Williams, 1999). For

example, coadministration of the NMDA receptor antagon-

ist MK-801 blocked the development and/or expression of

opiate (Gonzalez et al., 1997), ethanol (Liljequist, 1991),

and benzodiazepine (Steppuhn and Turski, 1993) depend-

ence. Further, NMDA receptor antagonists have been shown

to block tolerance to the locomotor depressant effects of

acute nicotine (Shoaib and Stolerman, 1992; Shoaib et al.,

1994) and sensitization to the locomotor stimulant effects of

chronic nicotine (Shoaib and Stolerman, 1992). Recently,

the role of glutamate transmission in nicotine withdrawal

has been investigated. Group II metabotropic glutamate

receptors (mGluR), which include mGluR2 and mGluR3,

are inhibitory receptors that are located at presynaptic and

postsynaptic locations (for review see Cartmell and

Schoepp, 2000). Stimulation of mGluR2/3 decreased glu-

tamate release throughout the hippocampus, striatum, and

cortex (East et al., 1995; Di Iorio et al., 1996; Toth, 1996;

Moghaddam and Adams, 1998; Cartmell and Schoepp,

2000). Interestingly, Helton et al. (1997) have shown that

the Group II mGluR selective agonist LY354740 amelio-

rated the increase in acoustic startle response observed in

rats undergoing nicotine withdrawal (Helton et al., 1997). In

light of this observation, it was suggested that enhanced

glutamate release may play a role in mediating the aversive

aspects of nicotine withdrawal that were reflected by an

increase in startle reactivity (Helton et al., 1997). It is

interesting that acute nicotine administration increased the

release of glutamate in various brain sites including the VTA

(Mansvelder and McGehee, 2000; Fu et al., 2000a; Grillner

and Svensson, 2000), NAcc (Reid et al., 2000), PFC

(Gioanni et al., 1999), and hippocampus (Gray et al.,

1996), whereas acute LY354740 decreased glutamate

release (see Cartmell and Schoepp, 2000). In fact, because

withdrawal effects are most often opposite in direction to

acute drug actions (Koob and Bloom, 1988), it might be

expected that nicotine withdrawal would be associated with

deficits in glutamate transmission. It is therefore somewhat

surprising that a drug that acts to decrease glutamate release

would ameliorate nicotine withdrawal, particularly because

activation of glutamate receptors plays a role in mediating

the rewarding actions of nicotine (Nisell et al., 1994a,b;

Schilstrom et al., 1998; Fu et al., 2000a). One possibility is

that glutamate release is increased only in certain brain sites

and not in others and that LY354740 selectively decreases

glutamate release involved in facilitating enhanced startle

reactivity. It is also possible that mGluR2/3 may be

expressed on presynaptic terminals that release a neuro-

transmitter other than glutamate that enhances startle react-

ivity during nicotine withdrawal, one such example being

cholecystokinin (Rasmussen et al., 1996). Therefore,

LY354740 may act at these putative mGluR2/3 heterorecep-

tors to block this release and thereby block the enhanced

startle reactivity observed during nicotine withdrawal.

9. Discussion

Evidence so far suggests that the negative affective

aspects of nicotine withdrawal, which appear to be medi-

ated exclusively by central populations of nAChRs, are

regulated by a number of different neurotransmitter sys-

tems. For example, deficits in serotonergic neurotransmis-

sion are likely to be involved in mediating elevations in

brain reward thresholds (Harrison et al., 2001) whereas

decreased opioid receptor activity is likely to be involved

in the conditioned aversive motivational states associated

with nicotine withdrawal (Watkins et al., 2000b). Although

it is clear that both central and peripheral populations of

nAChRs are involved in mediating somatic aspects of

nicotine withdrawal, it is unclear what other neurotransmit-

ter systems besides the cholinergic system are also

involved. One strong candidate is the noradrenergic system.

There is now a considerable amount of evidence suggesting

that noradrenaline plays a major role in mediating somatic

signs in rats undergoing opiate withdrawal (Delfs et al.,

2000; Maldonado, 1997). Moreover, clonidine, which acts

to decrease noradrenergic neurotransmission, has shown

efficacy in smoking cessation trials (for review see Gourlay

et al., 2000). Therefore, it is possible that noradrenaline may

play a role in mediating somatic signs in rats undergoing

nicotine withdrawal, although further studies are required to

address this possibility.

In addition to the classical neurotransmitters such as

serotonin and glutamate discussed in the present review, it

is likely that neuropeptides other than endogenous opiates

play a role in nicotine dependence and withdrawal. For
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example, the cholecystokinin-B (CCK-B) receptor antagon-

ist LY288513 reversed the enhanced startle response in rats

undergoing nicotine withdrawal (Rasmussen et al., 1996).

Interestingly, withdrawal from various drugs of abuse,

including ethanol (Pich et al., 1995), cocaine (Richter and

Weiss, 1999), opiates (Milanes et al., 1998), and even

cannabis (Rodriguez de Fonseca et al., 1997) has been shown

to increase the release of corticotropin-releasing factor

(CRF). CRF receptor antagonists alleviated symptoms of

withdrawal associated with these drugs (Baldwin et al., 1991;

Rassnick et al., 1993; Menzaghi et al., 1994; Heinrichs et al.,

1995; Basso et al., 1999; Lu et al., 2000). Furthermore,

similar to nicotine withdrawal, CRF and urocortin, a CRF

receptor agonist, elevated brain-stimulation reward thresh-

olds in rats (Macey et al., 2000). Taken together, these

observations suggest that increased CRF also may play a

role in the aversive aspects of nicotine withdrawal. Interest-

ingly, Heinrichs et al. (1996) and Sarnyai et al. (2001) have

reported that the CRF-binding protein ligand inhibitor CRF

(6–33) that acts to increase levels of free CRF in the brain,

suppressed the increase in weight gain observed in rats

undergoing nicotine withdrawal, but had no effect in nic-

otine naı̈ve rats. This observation suggests that the activity

of CRF-binding protein may increase during nicotine with-

drawal in order to compensate for an increase in the levels

of free CRF. Another neuropeptide that potentially could

play a role in nicotine withdrawal is substance P. This

neuropeptide acts at the neurokinin-1 (NK-1) receptor.

Blockade or genetic disruption of this receptor has been

shown to have anxiolytic (File, 1997, 2000; Santarelli et al.,

2001) and antidepressant (Kramer et al., 1998) effects. NK-1

receptor antagonists significantly decreased naloxone-

precipitated withdrawal behaviors in opiate-dependent rats

(Maldonado et al., 1993). Similarly, there was a significant

reduction in opiate withdrawal in mice with genetic deletion

of the NK-1 receptor (Murtra et al., 2000). Because there is

such a close interaction between nicotinic and opioid

receptors in mediating nicotine dependence, these observa-

tions suggest that substance P also may play a role in

nicotine withdrawal.

As evidenced by the content of the present review, most

investigations into the mechanisms underlying nicotine

withdrawal have focused on particular neurotransmitter

systems or receptors. However, it is likely that many of

the neurochemical effects produced by chronic nicotine

exposure converge at common molecular and cellular tar-

gets to give rise to the long-lasting changes in brain

structure and function that ultimately lead to dependence.

Therefore, investigation of molecular alterations associated

with nicotine dependence and withdrawal offers a promising

research target. There are a number of candidate molecular

substrates that might play a role in mediating cellular

adaptations to chronic nicotine exposure. One possibility

is that chronic nicotine treatment may alter the expression of

specialized intracellular signaling proteins like cyclic AMP

response element-DNA-binding protein (CREB) and c-fos

(Pandey et al., 1999) that are known to regulate the

expression of many genes throughout the brain. Indeed,

nicotine withdrawal decreased CREB expression in the

medial and basolateral nucleus of the amygdala and hip-

pocampus (Pandey et al., 2001) whereas increased c-fos

expression was observed in the CNA (Panagis et al., 2000).

Neurotrophic factors play a vital role in neuronal plasticity

(McAllister et al., 1999) and survival (Ghosh et al., 1994)

and represent another set of possible targets involved in the

long term actions of nicotine on the brain. Brain-derived

neurotrophic factor (BDNF), nerve growth factor (NGF),

and fibroblast growth factor-2 (FGF-2) are three examples

of neurotrophic factors involved in neuronal plasticity.

Acute nicotine treatment has been shown to decrease BDNF

expression in rat dorsal hippocampus whereas chronic

treatment increased its expression (Kenny et al., 2000b).

Nicotine also has been shown to produce long-lasting

increases in NGF in the hippocampus (French et al.,

1999) and FGF-2 in the cerebral cortex, hippocampus,

striatum, and substantia nigra (Roceri et al., 2001; Belluardo

et al., 1998, 1999). Interestingly, deficits in neurotrophin

expression, particularly BDNF, had been proposed to play a

significant role in the etiology of depression (Duman et al.,

1997; Altar, 1999), a major symptom of the nicotine

withdrawal syndrome (e.g., Covey et al., 1997). Therefore,

it is an intriguing possibility that nicotinic modulation of

neurotrophic factor expression may represent a mechanism

by which chronic nicotine treatment produces structural

changes in the brain that give rise to dependence and which

contributes to the negative affective symptoms observed

during withdrawal from chronic nicotine treatment.

In conclusion, perhaps the most striking observation

regarding the nicotine withdrawal syndrome is its com-

plexity. Nicotine withdrawal is not characterized by any

one single behavioral deficit, nor is it mediated by a change

in any single neurotransmitter system. Instead, this syn-

drome comprises a plethora of characteristic behaviors each

mediated by different underlying neuroanatomical and

neurochemical substrates. Further research is required to

identify the precise neurobiological substrates mediating

the affective and somatic aspects of nicotine withdrawal.

Such investigations eventually may lead to future strategies

for treating nicotine dependence beyond nicotine replace-

ment therapy.
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